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ABSTRACT

Certain commonly occurring types of network, whether

directed or undirected, exhibit a staged structure. Two

algorithms, based on node partitioning, are presented which take

advantage of such structure and which use a Markov transition-

probability form of recursion. The algorithm for directed

networks is related to the Markov chain formulation of Bailey and

Kulkarni, but for undirected networks a more detailed form of

state definition is used related to one suggested by Rosenthal.

The computational advantages of the algorithms are discussed

and some numerical results presented.

K
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1. INTRODUCTION

Consider a network G with node set N and are set A. The

nodes are perfect but arcs fail randomly and Independently with

probability 1 -Pa, acA. Let s and t be two specified nodes. The

calculation of

Pst - prob (there is a path from s to t) (1.1)

is called the s-t connectedness problem.

This problem is NP hard [10]. However, many algorithms

exist which solve it by enumerating key structures in the network.

tIf the number of these is small then such an algorithm may be

computationally efficient. Examples include spanning trees [2],

acyclic subgraphs [8], K-graphs [7] and cutsets [4].

A number of methods use node partition [1,6,9]. Though none

of these make any special assumption about the form of the net-

work, node partition seems to be a particularly good approach for

networks which have a staged structure. In this paper we consider

two node partition algorithms which exploit such structure.

Our starting point Is a decomposition used by Shogan [9] for

directed networks where the nodes are divided into disjoint

groups - which we call stages - and 'events' are then defined at

each stage in a way which allows their probabilities of

occurrence to be calcplated from those of the previous stage.

Shogan describes an algorithm based on path enumeration and

mentions, but does not follow the possibility of one based on

state enumeration. We suggest a modification of the definition

of event given by Shogan which gives an algorithm of this latter

type having a simpler form than that based on path enumeration.

., .. ... .
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Undirected networks can often also be decomposed into stages.

Our main result will be to show how the algorithm can be adapted

to deal with this case, too.

Both versions of the algorithm are related to ones already

c it e d. The directed network version is related to that proposed

by Bailey and Kulkarni [1], whilst the undirected network

algorithm is a recursive version of the general, but not fully

specified, framework described by Rosenthal 16).

As well as describing the algorithms, we assess their

computational advantages - and drawbacks - including some

numerical results.

For clarity, the bulk of our discussion assumes a form of

*stage decomposition that is simpler than necessary. In section 5

we show how the stage decomposition can be generalized to allow

versions of the algorithms that are, in certain situations, much

more efficient than the prototype versions.

2. DEFINITIONS AND NOTATION

*2.1 Staged Networks

Let G be a network with node set N and arc set A. An arc

connecting node i to node j is denoted by (i,j). We shall say

that G is a staged network if N can be divided into a number, Q

say, of disjoint sets

S1f is S2=.S - t (2.1)

such that

ia' U1
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S: if (i,J)cA and JCSq then ieSqluSq. (2.2)

(Shogan gives a slightly more general version which allows

iCSlUSq1USq in (2.2). The generalized definition of Section 5

incorporates this case.)

Condition S ensures that any path from s to t can only go

from nodes of one stage to those of the next stage. Thus no

'backtracking' from a higher to lower stage is possible.

The node-stages induce a corresponding stage structure on

the arcs A, dividing these into disjoint sets:

A2 , A3 ,.. .,AQ

where

Aq = (i,j) I icSq-IUSq and jcSqI. (2.3)

To note which arcs of Aq are up (operating) and which are

down (failed), we define

X i = 1 or 0 according as arc icAq is up or down, and

call

X = (X, X2 ,..., X Aq ). (2.4)

a failure pattern of Aq. It will be clear, from the context,

which subset Aq Is being referred to, so the dependence of X on q

will be suppressed.

Those arcs which, under X, are up, will be called the set of

up-arcs of Aq. The probability of obtaining X is

p(X) - H pa 11 (1-Pa). (2.5)
a:X =1 a:X =0a a

.. ~. aaL
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IA I
There are 2 q distinct failure patterns of A and we denoteq

the set of all these as Fq.

Consider now an undirected network G. We shall say that G

is staged if the nodes can be divided into disjoint sets

S1 = {S}, s2,...,SQ -{t

such that

T: if (i,j) cA and icSq, 1<q<Q then jcSqluSquSq+l. (2.6)

Condition T requires that an arc can only join two nodes of

the same or adjacent stages. Decomposition of the arc set into

disjoint subsets Aq exactly as defined in (2.3) is possible, and

the definition of failure pattern X given in (2.4) also still

applies. An example of an undirected staged network is given in

Fig. 2.

2.2 Recursive Markov Algorithms

The algorithms that we investigate operate in the following

way:

(i) A set of events, E, has to be found where each event

IEE, is associated with some subset of nodes.

(ii) The events are Markov in the sense that their

probabilities of occurrence, Pi, can be calculated from the

standard Markov one-step transition formula

pJ - piqlJ JcE (2.8)

IcE

where

qIj = prob (J occursj I occurs) (2.9)

* .. ~ .**~... - -.... s*.g
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is the transition probability.

(iii) If the events can be numbered so that transitions go

only from a lower to higher numbered event, then qlJ - 0 if J<I

and the pj may be calculated recursively from (2.8) in increasing

order of J. A special form of this is when the events can be

grouped into disjoint sets EIE 2 ,...,EQ with events of one group

giving rise to events of the next higher group only. Then (2.8)

reduces to

pJ P I qp IV JcE q+1 qs1,2,....,Q. (2.10)
I C Eq

3. THE ALGORITHMS

3.1 A Markov Algorithm for a Directed Staged Network

Consider a directed staged network. The algorithm of Shogan

focuses on events associated with a particular stage. Let V be a

subset of Sq. Shogan defines the events

U(V) = "there is a path from s to at least one

node of V'1

(3.1)

I(V) = "there are paths from s to all nodes of V'1

and gives exclusion-inclusion formulas relating the probabilities

of occurrence of such events to corresponding events of the

previous stage.

It is perhaps simpler to use the following events. Let

VL Sq-1 and WcSq and define
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[V] = "there is a path from s to all nodes of V,

but none from s to Sq_1.\V11 (3.2)

[V,W] - "Given [V] has occurred, each node of W is

reachable from some node of V but there is

no path from SqI\V to W, or from V to Sq\W" (3.3)

The event (3.2) can be viewed as the union of a number of events,

of a more general type given by Bailey and Kulkarni [1], that

utilizes the staged structure.

Let p[V] and p[V,W] denote the probabilities that [V] and

[V,W] occur. Then

p[s] 1

(3.4)

p[W] = p[V]p[V,W], WCSq, q-2,...,Q.
VcS-- q-1

This has form (2.10): the events {[V], VcSqI} form Eq.-I and the

p[V,Jl are tne qIj. The last stage calculation (when q = Q and

W = {t}) yields Pst, the probability of s-t connectedness.

What makes (3.4) simple is that the p[V,W] are very easily

calculated, because [V,W] depends only on the states of the arcs

of Aq. To see this, suppose that vcV, WcSq and there is a path

of up-arcs from v to w. From the definition of staged network,

this path may initially pass through nodes of Sq_1, however, once

it reaches a node of Sq it can only continue through nodes of S

until w is reached. Thus, given [V] has oceurred, all the nodes

of Sq_1 on the path must belong to V. If v' is the last node of V

-.r ' ' - - ' : ;. " *.*.%*"% "-/*'"v.-.' *\\ 4.*\'\ %* 1* . v
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on the path, there is, therefore, a path from v'EV to w comprised

entirely of up-arcs of Aq. Similarily a path from ucSqi\V to W

would, given that [V] has occurred, imply the existence of some

u'ESqI\V and a path of up-arcs of Aq from u' to w. It follows,

therefore, that [V,W] occurs if and only if, using paths with

arcs in Aq only, each node of W is reachable from some node of V,

no node of Sq\W is reachable from V, no node of W is reachable

from Sq_]\V. This is the required result. It can be viewed in

the following way:

Lemma 1 Let VcSqI and XEFq. Then the pair V,X induces a subset

WL-Sq defined by

W(V,X) = {wIwESq and there is a path, comprised only

of up-arcs of Aq (under X), from some node

of V to w] (3.5)

0

Figure 1 illustrates an example of such a W(V,X).

Clearly

p[V,W] = p(X) (3.6)
XEF

q
W(v,X) = W

and (3.4) reduces to p[s] - 1 and

p[W] = p[V]p(X), q-2,...,Q. (3.7)
VcS X F

- q-1 q
W(VX) = W

In numerical calculations (3.7) is easy to implement as there is

no need to compute the p[W] one at a time. Instead, not3 that in

C'

%* *%....... ...., " . 5 >''" .'r , . .=,i : ;,'.".rv -". > ". ', '' ; .?, .¢2;.,'.. .'' ' •. '",i _ .. " , ., - ," " "C
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calculating all the pEW], each V,X combination is used once only.

Thus (3.7) can be implemented as

Algorithm A

p[s] + 1

for q=2,..,Q

p[W] + 0 all WcSq

for each VcSq_1

for each XcFq (3.8)

W + W(V,X)

p[W] 4- p[W] + p[V]p(X)

next X

next V

next q

3.2 A Markov Algorithm for Undirected Staged Networks

For an undirected network the event definition (3.2) does

not give a useful algorithm because a path may 'backtrack.'

Instead, consider all the nodes of a stage Sq and think of them

as partitioned into disjoint groups. Fig. 2 illustrates S 2 parti-

tioned as (1)(2)(34). We dentte a partition by 7r and the set of

all partitions of Sq by Tq, and define the following event:

[I] = [7T; v1

q
I= TETq and, using arcs of U A only:

r=2 r

(i) each group of nodes in n is connected

(ii) nodes between groups are unconnected

(iii) s is connected to group v" (3.9)
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The set of all such events associated with Sq will be

denoted by Eq. Fig. 2 illustrates the event [(1)(2)(34);3]E 2

and the event [(5)(67);2]cE 3.

The above definition can be viewed as a specialization of a

general type of event considered by Rosenthal [6], who outlines

an algorithm framework based on combining subnetworks two at a

time. The framework does not make specific use of staged

structure but clearly has such a form in mind. The algorithm

below takes specific note of the Markov nature of the

calculation, so that the computational form is somewhat different

to that of Rosenthal's even though the event probabilities are

essentially the same. We use an analogue of Lemma 1:

Lemma 2 An event I = [ir;A]EEqi and failure pattern XCFq induces

a unique event J = [p;v]EEq, which will be denoted by J(I,X).

Proof We form a subnetwork, H, as follows. The node set is

SqIUSq. The nodes of Sq are treated normally. However, those

of SqI are divided by the partition w into disjoint groups and,

in H, the nodes of each group are treated as being combined into

a single node (there being a separate node for each set). The

arc set of H is just the set of up-arcs of X.

Now in H the nodes of Sq can be naturally partitioned into

disjoint sets; all the nodes within a set are connected (possibly

via paths which pass through combined nodes of Sq I ), but nodes

belonging to different sets are disconnected. If we denote this
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partition by p and take v to be the set (of p) which is connected

to A, then this uniquely defines J w [p;v]. 0

Fig. 2 gives an example of such an event J(I,X).

The same recursive algorithm (3.7) still applies.

p[s;1] = I

p[J] = X p[I]p(X), JcE q=2...,Q
IeE XEF qq-1 qJ(I,X) J (3.10)

and again the modified form (3.8) can be used for numerical

calculation:

Algorithm B

p[s;1] = 1

for q=2,...,Q

p[J] *- 0 all JcEq

for each IcEqI (3.11)

for each XEFq

J + J(I,X)

p[W] - p[w] + p[Ip(X)

next X

next I

next q

4. COMPUTATIONAL ASPECTS AND COMPLEXITY

For Algorithm A, the calculation of W(V,X) and p[W] Is done

Isq1 + IAI
2 q-1 q (4.1)

Sik txjl*-
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times at stage q. For Algorithm B, finding the partitions p is

the most time consuming calculation. From the definition of

J(I,X) = [p;v] where I = [w;A] we see that p depends on w and X

only and not on v. Thus in (3.11) p needs only be determined for

each (n,X) and not each (w,X,v), a total of

IA I
g(ISq-11) - 2 q (4.2)

times, where g(m) = number of possible partitions of m objects,

is the sum of Stirling numbers of the second kind (see, eg. [15]).

As g grows hyperexponentially, see Table 1 for selected values,

this is the main factor limiting the size of networks that can be

handled.

Table 1

g(m) = number of partitions of m objects

m 1 2 3 4 5 6 7 8

2m 2 4 8 16 32 64 128 256

g(m) 1 2 5 15 52 203 877 4140

Each calculation of W in Algorithm A, and p in Algorithm B,

requires examination of the connectivity of the subgraph

Gq= 1 Sq-iuSqAqJ. An algorithm like "breadth-first search" (see

[5], for example) can be used for this, and will need

o(Isq-lI+ISql+Aq) elementary operations.

Algorithm B has the additional requirement of a hash

function or subroutine which (i) assigns a label to each

.**.*.*9,.*...~., v V. ~ - ~
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partition (of a set of given cardinality) and, inversely, (ii)

given a particular label, specifies the precise grouping of the

nodes in that partition. Part (I) is needed to identify the

component of the array p[J] to be incremented in (3.11) and (ii)

is needed to allow partitions to be stepped through

sy.stematically in the outer loop of (3.11). The Appendix gives

such a subroutine, whose complexity is O(m) where m is the

cardinality of the set being partitioned.

To test its effectiveness, a Fortran version of Algorithm B

was used, on an IBM Personal Computer AT, to calculated Pst for

the dodecahedron network of Fig. 3 and the grid network of Fig. 4.

The computation time was 41/2 minutes and 52 minutes respectively.

Though we have not made a direct comparison, this compares well

with other algorithms. For example, for the test network used in

[1], which is in effect a dodecahedron reduced by 3 nodes and 5

arcs, Bailey and Kulkarni report timings of 54 minutes, 8 minutes

and 1 minute 26 seconds using respectively, the algorithms of

Buzacott [3], Provan and Ball [4] and their own [1], on an IBM

4381-k which is approximately 10 times faster than the IBM PC-AT,

(all algorithms computed the reliability as .99806 when Pa - 0.9,

all a).

Both Algorithms A and B resemble dynamic programming

recursions whose calculations of one stage depend only on the

results of the immediately preceding stage. For networks like the

grid of Fig. 4, this means that a substantial computational
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saving Is possible by avoiding the repetition of identical calcu-

lations made at each stage. More precisely, suppose the subnet-

works Gq = tSq.luSqAq} and Gr = ISr-iuSr,Arl (with q<r, say)

have exactly the same structure. Then, during the calculations at

stage q, the computed values of W(V,X) (respectively J(I,X))

should be saved for all VcSqI (respectively IeEqI) and XcFq.

This time consuming computation need not then be repeated during

the rth stage calculation, as, with suitable labelling of the

nodes and arcs of Gr, so that they correspond to those of Gq, the

same values of W(V,X) (respectively J(I,X)) can be used for

VCSrI (respectively IEErI) and XcFr.

For example in the grid network of Fig. 4, the CPU time of

52 minutes is mostly taken up by the calculations of stage 3 (12

min 5 secs) and of stages 4, 5 and 6 (13 min 10 secs each). As

Gq (q=3,4,5,6) are identical, we would estimate an algorithm that

avoids the repeated calculation of the J(I,X) would reduce the

computation by more than half.

Finally we note that, for clarity of exposition, an unneces-

sarily rigid definition of staging has been given. In the next

section we show how the definition can be generalized. It should

be emphasized that though the timings above already compare favor-

ably with published work, the use of generalized stages can lead

to further substantial savings in computing time.
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5. OVERLAPPING STAGES

The definitions of staging, S and T, can be relaxed to give

more flexibility to the two algorithms. The following generali-

zation can be used for both directed and undirected networks.

U: There are three sequences of subsets of N:

s - fs}, s2,...,sQ - Jt}

M 1 , M2 ,...,MQ_ 1  (5.1)

N, - {s}, N 2 ,...,NQ - t=

such that

Q
U S q =N (5.2)
q-1

Sq . ( Sq-I\Mq_ )UNq I
Mq-1 E Sq. q-2,...,Q (5.3)

q-1
Nqn (US) 

r-1

And for any (i,j)cA:

if iCNq, JENr and q>r then JeSq_1 (5.4)

0

The condition (5.3) allows the sets Sq to overlap. Conditions

and T comprise the special case Mq - Sq, all q, when Nq - Sq;

the Sq are then disjoint and (5.4) reduces to (2.2) or (2.6).

It is readily verified that the Nq are disjoint and that

Q
U N - N. (5.5)

q.1q

- 1 p -.-. , *' V 4
9
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The node stages induce a staged structure on the arcs which

still decompose into disjoint subsets

Q
A2 , A3 ,..., AQ with U Aq A (5.6)

2

where

A . {(i,j)JiES uNq and jeN q. (5.7)
, q q-1 I q

With this definition of Sq and Aq. Algorithms A and B still

apply completely unaltered.

The stage q calculations are still of the order of (4.1) or

(4.2) under condition U. The calculations of stage q will thus be

efficient if SqI and Aq are such that the following two

conditions are met.

(I) The cardinality of Sq-1 is kept small to keep small the

factor involving ISq_11 in (4.1) or (4.2). This requires making

IMq-1I as large, and INqI as small as possible.

(ii) The cardinality of Aq is kept small to keep small the

IA I
factor 2 q in (4.1) or (4.2). This can be done, indirectly, by

making INqJ as small as possible,

There is a trade-off here in that a small INqI at each stage

will make for a larger total number of stages Q. As computational

complexity depends only linearly on Q, but exponentially on lAqi ,

the trade in the direction of small INqI will almost always be

worth making.

As an example consider the grid of Fig. 4. If, instead of

the staging given in the figure, we use

-U _ ., ., ;, ,-% , y . , F,-l- ,, : . ' ' ; W; X >
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S 2 =

S3  = (S2\(1))u7 = (2,3,...,7)

S4  = (S3 \(2))u8 = (3,4,...,8)

S5 - (S4\(3))u9 = (4,5,...,9)

S3 0  = (25,26,...,30)

S31 - (t)

then ISqI - 6, IMq-1I - INqI = 1 for q - 2,3.....30, and IAqI -< 2

for q = 3, 4. .. .30. The four main stages of the original

decomposition, each with IAqI - 11, is thus replaced by 24 stages

each with lAqi < 2. The computational complexity is thus reduced

by a factor ~ (4x2 1 1 )/(24x2 2 ) = 85.3. Because of incidental

computational overheads which we have not fully accounted for

(such as initialization of arrays), the actual improvement in

speed will be by a factor rather less 85.3; however the

improvement is still very substantial. A Fortran implementation

*of this version of staging reduced the computing time, from the

52 minutes quoted previously, to 1 minute 58 seconds.

A similar use of overlapping stages for the dodecahedron

example of Fig. 3 reduced computation time from 4Y. minutes to 34

seconds.

" " " i -' " ' , " " v, v~, 3 I 'W,'a' " h' W'h' [al N
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APPENDIX

We describe here a method of labelling partitions and its

inverse which enables a partition to be recovered from its label.

The partitions of M objects can be divided into M sets, the

kth set comprising all those partitions where the objects are

divided into k groups. For instance (13)(2)(4) represents the

partition of 4 objects into 3 groups: (13), (2) and (4); this

partition thus belongs to the 3rd set. Let

g(k,M) - number of partitions (of M objects)

in the kth set

These are the Stirling numbers of the second kind (see, for

example, [5]).

We shall label partitions in the order of these sets (i.e.

those of the first set first, then those of the second set, and

so on). The position of a partition is thus completely defined

once the position within the set to which it belongs is fixed.

Table IA illustrates one method by which the partitions of m

objects may be built up by systematically listing all the ways

that the mth object can be adjointed to each of the partitions of

the previous m-1 objects. The method used is as follows.

For a partition of m objects, let km be the set to which it

belongs and jm its position in the set. Now, a partition is

defined by specifying, for each object m, the group nm to which

it belongs. In Table 1A, kM and JM are determined from nm

(m=1,2,...,M) using:
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k 1  - 1, l = 1,

km = kmin.l, m =. (Jm-l-1)km-l+nm if nm S kn 1 n

km = nm, Jm - jm- +g(kmm)-g(km-1,m-1) otherwise

which recursively gives the position Jm,km of the partition of

the first m objects, for m-1,2,...,M.

Table IA

Partition of m objects into k groups

m 1 2 3 4

k

1 (1) (12) (123) (1234)

2 (1)(2) (13)(2) (134)(2)
(13)(24)

(1)(23) (14)(23)

(1)(234)
(12)(3) (1214)(3)

(12)(34)
(123)(4)

3 (1)(2)(3) (14)(2)(3)

(1)(24)(3)
(1)(2)(34)
(13)(2)(4)
(1)(23)(4)
(12)(3)(4)

4 (1)(2)(3)(4)
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The overall position of a partition is

k -1

r = ml g(km) + j
k-1 m

The inverse calculation allows the group, nm, to which each

object m belongs, to be calculated from r. It is as follows.

Set m = M and determine kmJm (%kM,JM) from the conditions

k M - 1 kM
r - I g(k,m) - J > O, r - g(k,M) S 0.

k=1 k-i

Moreover g(k,m) = kg(k,m) + g(k-l,m-1), so that

A. Either jm-kmg(km,m-1) = j>O, in which case the partition (of

the first m objects) is the jth amongst the last g(km-l,m-1)

partitions of the kmth set. This means the object is in the last

group (on its own!) and so

nm s kin, km-1 = kml, Jm-1 - j.

B. Otherwise we can set km_1 = k m and find nm,Jm I from the

conditions

nm = Jm -(jm-1 - I ) km > 0, Jm - Jm-lkm < 0.

This fixes object m as being in group nm; and the partition of

the first m-1 objects as being the Jm-ith in the km-ith set.

Thus setting m * m-1 , we can repeat steps A or B until m1,

when we set n, - 1; at which stage all the n m  (m1,2,...,M) have

been found.

~~~~~ & E: ~. . ~ . . .
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Figure 1 A Directed Staged Network

h 4

aup-arc

* dow-arc

S1 = (s) S2  1,2,3) S3 
= (4,5,6) S4 = (t)

A2 = (a,b,...,g) A3 = (h,i,...,n) A4 - (o,p,q)

Event [V] = [(2,3)] has occurred at stage 2.

A2 has failure pattern X - (0101000).

W(VX) = (4,5).
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Figure 2 An Undirected Staged Network

b n

________down-arc

SI=(s) S2 = (1,2,3,4) S3 = (5,6,7) S4 = (t)

A2 = (a,b,.. .,g) A3 = (h,i,...,o) A4 = (p,q,r)

Event I = F(1)(2)(34);31 has occurred at stage 2.

A has failure pattern X = (11010100)

2;

J(IX 0 ()6)2
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Figure 3 Dodecahedron

e~~~~ 13 =11,8,9 6

44

SA2 =(s) 1,,3 (3,4) (4 5.,2 (5, ffi. ,1 4...,1,2..,6
5 1 ( 9) S97

A2

5 6 14 2

6.51 21 55 2

3 91 .597120

4.25 259970

s I = (S s~J % 2 = I*I~.*. (2,3,4)* S' 3 . (56,..10 S 4 .(1112 .,6
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Figure 4 A Grid Network

S1  1 7 1s 12,.,6 3  19 (8..,2

S4  2 (34,.18) 14 -( 20.24 26 (226.,3) S -()
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